A rigidity result for metric measure spaces with euclidean heat kernel

Gilles Carron, David Tewodrose

Onderzoeksoutput: Articlepeer review

2 Citaten (Scopus)

Samenvatting

We prove that a metric measure space equipped with a Dirichlet form admitting an Euclidean heat kernel is necessarily isometric to the Euclidean space. This helps us providing an alternative proof of Colding's celebrated almost rigidity volume theorem via a quantitative version of our main result. We also discuss the case of a metric measure space equipped with a Dirichlet form admitting a spherical heat kernel.

Originele taal-2English
Pagina's (van-tot)101-154
Aantal pagina's54
TijdschriftJournal de l'Ecole Polytechnique - Mathematiques
Volume9
DOI's
StatusPublished - 2021

Bibliografische nota

Publisher Copyright:
© 2021 Ecole Polytechnique. All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'A rigidity result for metric measure spaces with euclidean heat kernel'. Samen vormen ze een unieke vingerafdruk.

Citeer dit