A theoretical study on the advantage of core-shell particles with radially-oriented mesopores

Sander Deridder, Martina Catani, Alberto Cavazzini, Gert Desmet

Onderzoeksoutput: Articlepeer review

26 Citaten (Scopus)

Samenvatting

We report on a first-principles numerical study explaining the potential advantage of core-shell particles with strictly radially-oriented mesopores. Comparing the efficiency of these particles with fully porous and core-shell particles with a conventional (i.e., randomly oriented) mesopore network, the present numerical study shows a similar strong reduction in minimal reduced plate height (h(min)) as was very recently observed in an experimental study by Wei et al. (respectively a h(min)-reduction on the order of about 1 and 0.5 reduced plate height-units). As such, the present work provides a theoretical basis to understand and confirm their experimental findings and quantifies the general advantage of "radial-diffusion-only" particles. Determining the effective longitudinal diffusion (B-term contribution) in a series of dedicated, independent simulations, it was found that this contribution can be described by a very simple, yet fully exact mathematical expression for the case of "radial- diffusion-only" particles. Using this expression, the significant increase in efficiency of these particles can be fully attributed to their much smaller B-term band broadening, while their C-term band broadening (representing the mass transfer resistance) remains unaffected. (C) 2016 Elsevier B.V. All rights reserved.
Originele taal-2English
Pagina's (van-tot)137-144
Aantal pagina's8
TijdschriftJournal of Chromatography A
Volume1456
DOI's
StatusPublished - 22 jul 2016

Vingerafdruk

Duik in de onderzoeksthema's van 'A theoretical study on the advantage of core-shell particles with radially-oriented mesopores'. Samen vormen ze een unieke vingerafdruk.

Citeer dit