Accurate and resource-aware classification based on measurement data

Anna Marconato, Michele Gubian, Andrea Boni, Bruno Caprile, D. Petri

Onderzoeksoutput: Articlepeer review

7 Citaten (Scopus)

Samenvatting

In this paper, we face the problem of designing accurate decision-making modules in measurement systems that need to be implemented on resource-constrained platforms. We propose a methodology based on multiobjective optimization and genetic algorithms (GAs) for the analysis of support vector machine (SVM) solutions in the classification error-complexity space. Specific criteria for the choice of optimal SVM classifiers and experimental results on both real and synthetic data will also be discussed.
Originele taal-2English
Pagina's (van-tot)2044-2051
Aantal pagina's8
TijdschriftIEEE Transactions on Instrumentation and Measurement
Volume57
StatusPublished - 1 sep. 2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Accurate and resource-aware classification based on measurement data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit