Actions of skew braces and set-theoretic solutions of the reflection equation

Onderzoeksoutput: Articlepeer review

16 Citaten (Scopus)

Samenvatting

A skew brace, as introduced by L. Guarnieri and L. Vendramin, is a set with two group structures interacting in a particular way. When one of the group structures is abelian, one gets back the notion of brace as introduced by W. Rump. Skew braces can be used to construct solutions of the quantum Yang–Baxter equation. In this article, we introduce a notion of action of a skew brace, and show how it leads to solutions of the closely associated reflection equation.
Originele taal-2English
Pagina's (van-tot)1089-1113
Aantal pagina's25
TijdschriftProceedings of the Edinburgh Mathematical Society
Volume62
Nummer van het tijdschrift4
DOI's
StatusPublished - 2019

Vingerafdruk

Duik in de onderzoeksthema's van 'Actions of skew braces and set-theoretic solutions of the reflection equation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit