Algorithmic aspects of units in group rings

Leo Margolis, Andreas Bächle, W. Kimmerle

Onderzoeksoutput: Chapterpeer review

4 Citaten (Scopus)

Samenvatting

We describe the main questions connected to torsion subgroups in the unit group of integral group rings of finite groups and algorithmic methods to attack these questions. We then prove the Zassenhaus Conjecture for Amitsur groups and prove that any normalized torsion subgroup in the unit group of an integral group of a Frobenius complement is isomorphic to a subgroup of the group base. Moreover we study the orders of torsion units in integral group rings of finite almost quasisimple groups and the existence of torsion-free normal subgroups of finite index in the unit group.
Originele taal-2English
TitelAlgorithmic and Experimental Methods in Algebra, Geometry, and Number Theory
RedacteurenGebhard Böckle, Wolfram Decker, Gunter Malle
UitgeverijSpringer
Pagina's1-22
Aantal pagina's22
ISBN van elektronische versie978-3-319-70566-8
ISBN van geprinte versie978-3-319-70565-1
DOI's
StatusPublished - 25 mrt 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Algorithmic aspects of units in group rings'. Samen vormen ze een unieke vingerafdruk.

Citeer dit