An Explosive Driven Shock Tube-Based Laboratory Scale Test for Combined Blast and Fragment Impact Loading

Oussama Atoui, Georgios Kechagiadakis, Abdelhafidh Moumen, Azer Maazoun, Bachir Belkassem, Lincy Pyl, David Lecompte

Onderzoeksoutput: Articlepeer review

4 Citaten (Scopus)
63 Downloads (Pure)


This work is a part of a larger research effort to better understand the combined effect of the blast wave and fragment impacts following the detonation of a shrapnel bomb. It is known that the time interval ∆t, which represents the difference in arrival time between the blast wave front and the fragment at the position of a given target object, has a significant influence on its response mode. This paper presents insights into the establishment of a laboratory scale technique to generate a combined blast loading and single or multiple projectile impacts on a target. The objective of the setup is to control the time interval ∆t to a certain extent so that the different response modes of the tested structures can be investigated. In order to reduce the complexity associated with the random nature of the shrapnel, steel ball bearings are used to simulate the projected fragments. They are embedded in a solid explosive charge, which is detonated at the entrance of an explosive driven shock tube. The experimental work demonstrates that it is possible to orient the path of a single projectile inside the tube when aiming at a target positioned at its exit. The setup guarantees the generation of a well-controlled planar blast wave characterized by its peak pressure, impulse and blast wave arrival time at the exit of the tube. The influence of the mass of the charge and the diameter of the projectile on its velocity study shows that for the same charge mass, the time interval increases with increasing projectile diameter. The experiments are numerically simulated based on an Eulerian approach using the LS-DYNA finite element software. The computational model allows to reveal details about the projectile flight characteristics inside the tube. Both the experimental and numerical data show the influence of the charge and projectile parameters on the time interval.
Originele taal-2English
TijdschriftApplied Sciences (MDPI)
Nummer van het tijdschrift14
StatusPublished - 6 jul 2022

Bibliografische nota

1.Explosive Violence Monitor: 2020. Available online: (accessed on 21March 2022).

2.Improvised Explosive Device (IED) Monitor. Available online: (accessed on 21 March 2022).

3.Marchand, K.A.; Vargas, M.; Nixon, J.D. The Synergistic Effects of Combined Blast and Fragment Loadings; Technical Report; Southwest Research Inst.: San Antonio, TX, USA, 1992.

4.Kong, X.S.; Wu, W.G.; Li, J.; Chen, P.; Liu, F. Experimental and Numerical Investigation on a Multi-Layer Protective Structure under the Synergistic Effect of Blast and Fragment Loadings. Int. J. Impact Eng.2013,65, 146–162. [CrossRef]

5.Gotts, P. International ballistic and blast specifications and standards. In Light weight Ballistic Composites; Elsevier: Amsterdam, The Netherlands, 2016; pp. 115–156. [CrossRef]

6.Xie, W.; Zhang, W.; Kuang, N.; Li, D.; Huang, W.; Gao, Y.; Ye, N.; Guo, L.; Ren, P. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere. Compos. Part B Eng.2016,99, 483–493. [CrossRef]

7.Lozano, E. Design and Analysis of a Personnel Blast Shield for Different Explosives Applications; Colorado School of Mines: Golden, CO, USA, 2016.

8.Nurick, G.; Martin, J. Deformation of thin plates subjected to impulsive loading—A review Part II: Experimental studies. Int. J. Impact Eng.1989,8, 171–186. [CrossRef]

9.Maazoun, A.; Belkassem, B.; Reymen, B.; Matthys, S.; Vantomme, J.; Lecompte, D. Blast response of RC slabs with externally bonded reinforcement: Experimental and analytical verification. Compos. Struct.2018,200, 246–257. [CrossRef]

10.Zhu, W.; Huang, G.; Liu, H.; Lai, W.; bin Bian, X.; Shan, F.S. Experimental and numerical investigation of a hollow cylindrical water based barrier against internal blast induced fragment loading. Int. J. Impact Eng.2020,138, 103503. [CrossRef]

11.Grisaro, H.D.A. Towards a better understanding of the response of RC barriers to combined loading of blast and fragments. In Proceedings of the The 11th fib International PhD Symposium in Civil Engineering, Tokyo, Japan, 29–31 August 2016; pp. 353–360.

12.Zhang, C.; Cheng, Y.; Zhang, P.; Duan, X.; Liu, J.; Li, Y. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading. Eng. Struct.2017,151, 459–471. [CrossRef]

13.Cai, S.; Liu, J.; Zhang, P.; Li, C.; Cheng, Y.; Chen, C. Experimental study on failure mechanisms of sandwich panels with multi-layered aluminum foam/UHMWPE laminate core under combined blast and fragments loading. Thin-Walled Struct.2021,159, 107227. [CrossRef]

14.Grisaro, H.Y.; Dancygier, A.N. Dynamic Response of RC Elements Subjected to Combined Loading of Blast and Fragments.Eng.Struct.2021,147, 04020315. [CrossRef]

15.Nyström, U.; Gylltoft, K. Numerical studies of the combined effects of blast and fragment loading. Int. J. Impact Eng.2009,36, 995–1005. [CrossRef]

16.Zhang, C.; Gholipour, G.; Mousavi, A.A. Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Eng. Struct.2019,181, 124–142. [CrossRef]

17.Li, Y.; Chen, Z.; Ren, X.; Tao, R.; Gao, R.; Fang, D. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading. Int. J. Impact Eng.2020,142, 103579. [CrossRef]

18.Lai, E.; Zhao, J.; Li, X.; Hu, K.; Chen, G. Dynamic responses and damage of storage tanks under the coupling effect of blast wave and fragment impact. J. Loss Prev. Process Ind.2021,73, 104617. [CrossRef]

19.Price, M.A.; Nguyen, V.T.; Hassan, O.; Morgan, K. An approach to modeling blast and fragment risks from improvised explosive devices. Appl. Math. Model.2017,50, 715–731. [CrossRef]

20.Li, L.; Zhang, Q.C.; Zhang, R.; Wang, X.; Zhao, Z.Y.; He, S.Y.; Han, B.; Lu, T.J. A laboratory experimental technique for simulating combined blast and impact loading. Int. J. Impact Eng.2019,134, 103382. [CrossRef]

21.Qi, R.; Langdon, G.S.; Cloete, T.J.; Yuen, S.C.K. Behaviour of a blast-driven ball bearing embedded in rear detonated cylindrical explosive. Int. J. Impact Eng.2020,146, 103698. [CrossRef]

22.LS-DYNA Keyword User’s Manual Volume I. Available online: (accessed on21 March 2022).

23.Mellen, P.; Shanahan, C.; Bennett, T. Blast and fragmentation loading indicative of a VBIED surrogate for structural panel response analysis. Int. J. Impact Eng.2019,126, 172–184. [CrossRef]

24.Louar, M.; Belkassem, B.; Ousji, H.; Spranghers, K.; Kakogiannis, D.; Pyl, L.; Vantomme, J. Explosive driven shock tube loading of aluminium plates: Experimental study. Int. J. Impact Eng.2015,86, 111–123. [CrossRef]

25.PCB Dynamic Pressure Sensors for High Frequency Measurements. Available online: (accessed on 21 March 2022).

26.Moumen, A.; Grossen, J.; Ndindabahizi, I.; Gallant, J.; Hendrick, P. Visualization and Analysis of Muzzle Flow Fields Using the Background-Oriented Schlieren Technique. J. Vis.2020,23, 409–423. [CrossRef]

27.Atoui, O.; Lecompte, D.; Belkassem, B. Tests Showing the Projectile Flight Trajectory of 5, 7 and 8 mm Diameter Steel Spheres Attached to Either a Detonator or a Rear Detonated C4 Spherical Explosive Charge.Zenodo2022, 70238. [CrossRef]

28.Robbe, C.; Nsiampa, N.; Oukara, A.; Papy, A. Quantification of the uncertainties of high-speed camera measurements. Int. J. Metrol. Qual.2014,5, 201. [CrossRef]

29.Robbe, C.; Nsiampa, N.; Papy, A.; Oukara, A. Practical considerations for using high-speed camera to measure dynamic deformation occurring at the impact of a kinetic energy non-lethal weapon projectile on ballistic simulant. In Proceedings of the Personal Armor System Symposium (PASS) Conference Proceedings, Nuremberg, Germany, 17–21 September 2012.

30.Thielicke, W.; Stamhuis, E.J. PIVlab—Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB.J. Open Res. Softw.2014,7, 14. [CrossRef]

31.Photron FASTCAM Viewer Operation Manual. Available online: (accessed on 21 March 2022).

32.Langdon, G.; Curry, R.; Rigby, S.; Pickering, E.; Clarke, S.; Tyas, A. Optical diagnostics in near-field blast measurements. Fire Blast Inf. Group Tech. Newsl.2021,82, 25–30.

33.Peton, N.; Lardjane, N. An Eulerian version of geometrical blast dynamics for 3D simulations. Shock Waves2022,32, 241–259.[CrossRef]

34.Chen, M.; Liu, M.; Tang, Y. Comparison of Euler-Euler and Euler-Lagrange approaches for simulating gas-solid flows in a multiple-spouted bed. Int. J. Chem. Reactor Eng.2019,17, 20180254. [CrossRef]

35.Ma, T.; Wang, C.; Ning, J. Multi-material eulerian formulations and hydrocode for the simulation of explosions. Comp. Model. Eng. Sci. CMES2008,33, 155–178. [CrossRef]

36.Gao, C.; Kong, X.-z.; Fang, Q.; Hong, J.; Wang, Y. Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation. Def. Technol.2021. [CrossRef]

37.Schwer, L.; Rigby, S. Secondary and height of burst shock reflections: Application of afterburning. In Proceedings of the 25thInternational Symposium on Military Aspects of Blast and Shock, Paper, The Hague, The Netherlanders, 21–25 September 2018.

38.Ning, P.; Tang, D. Influence of explosive density on small scale internal blast experiments. J. Chongqing Univ.2012,11, 119–126.

39.Dobratz, B.M.LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants; Technical Report; Lawrence Livermore National Lab.: Livermore, CA, USA, 1981.

40.Riegel, J.J.P.; Davison, D. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models. Def. Technol.2016,126, 172–184. [CrossRef]


Duik in de onderzoeksthema's van 'An Explosive Driven Shock Tube-Based Laboratory Scale Test for Combined Blast and Fragment Impact Loading'. Samen vormen ze een unieke vingerafdruk.

Citeer dit