Asymptotic mean value Laplacian in metric measure spaces

Andreas Minne, David Tewodrose

Onderzoeksoutput: Articlepeer review

3 Citaten (Scopus)

Samenvatting

We use the mean value property in an asymptotic way to provide a notion of a pointwise Laplacian, called AMV Laplacian, that we study in several contexts including the Heisenberg group and weighted Lebesgue measures. We focus especially on a class of metric measure spaces including intersecting submanifolds of Rn, a context in which our notion brings new insights; the Kirchhoff law appears as a special case. In the general case, we also prove a maximum and comparison principle, as well as a Green-type identity for a related operator.

Originele taal-2English
Artikelnummer124330
Aantal pagina's21
TijdschriftJournal of Mathematical Analysis and Applications
Volume491
Nummer van het tijdschrift2
DOI's
StatusPublished - 15 nov 2020

Bibliografische nota

Publisher Copyright:
© 2020 Elsevier Inc.

Vingerafdruk

Duik in de onderzoeksthema's van 'Asymptotic mean value Laplacian in metric measure spaces'. Samen vormen ze een unieke vingerafdruk.

Citeer dit