TY - JOUR
T1 - Augmented reality guidance improves accuracy of orthopedic drilling procedures
AU - Van Gestel, Frederick
AU - Van Aerschot, Fiene
AU - Frantz, Taylor
AU - Verhellen, Anouk
AU - Barbé, Kurt
AU - Jansen, Bart
AU - Vandemeulebroucke, Jef
AU - Duerinck, Johnny
AU - Scheerlinck, Thierry
N1 - Funding Information:
The SARA research project was funded by the Flemish government through the ICON (Interdisciplinary Cooperative Research) program, provided by Flanders Innovation & Entrepreneurship and imec NPO (Interuniversity Microelectronics Centre). There was no involvement from the funders in the study design, collection, analysis and interpretation of data, the writing of this article, or the decision to submit it for publication.
Publisher Copyright:
© The Author(s) 2024.
PY - 2024/10/25
Y1 - 2024/10/25
N2 - In several orthopedic procedures, the accurate use of surgical power tools is critical to avoid damage to surrounding tissues. As such, various guidance techniques and safety measures were developed. Augmented reality (AR) guidance shows promise but requires validation. We evaluated a new approach using an inside-out infrared tracking solution for the HoloLens to compensate for its limited tracking performance. Eighteen participants with varying levels of experience (student, trainee, expert) each drilled twelve trajectories (six perpendicular, six oblique) in equidimensional wooden logs. Three different techniques were evaluated: freehand drilling; proprioception-guided drilling towards the contralateral index finger; and AR-guided drilling using a tracked drill and a virtual overlay of the log with predefined guidance vectors. The angular errors between planned and performed trajectories were compared using a mixed-design ANOVA. The results demonstrated that guidance technique (p < 0.001) and drilling direction (p < 0.001) significantly affected drilling accuracy, while experience (p = 0.75) did not. AR outperformed both other techniques, particularly for oblique trajectories (p < 0.001). For perpendicular trajectories, it only outperformed proprioception guidance (p = 0.04). Target plots revealed an important scatter perpendicular to the longitudinal axis of the log during freehand and proprioception-guided drilling, especially for oblique trajectories. This inaccuracy disappeared during AR-guided drilling. As such, we were able to conclude that AR guidance using inside-out infrared tracking reduced angular uncertainty during directional drilling, resulting in improved drilling accuracy. This improvement was particularly noticeable for complex trajectories and angles. The benefits of AR guidance were observed across all experience levels, highlighting its potential for orthopedic applications. We believe this study opens the way for the methodical evaluation of AR guidance in specific orthopedic use cases.
AB - In several orthopedic procedures, the accurate use of surgical power tools is critical to avoid damage to surrounding tissues. As such, various guidance techniques and safety measures were developed. Augmented reality (AR) guidance shows promise but requires validation. We evaluated a new approach using an inside-out infrared tracking solution for the HoloLens to compensate for its limited tracking performance. Eighteen participants with varying levels of experience (student, trainee, expert) each drilled twelve trajectories (six perpendicular, six oblique) in equidimensional wooden logs. Three different techniques were evaluated: freehand drilling; proprioception-guided drilling towards the contralateral index finger; and AR-guided drilling using a tracked drill and a virtual overlay of the log with predefined guidance vectors. The angular errors between planned and performed trajectories were compared using a mixed-design ANOVA. The results demonstrated that guidance technique (p < 0.001) and drilling direction (p < 0.001) significantly affected drilling accuracy, while experience (p = 0.75) did not. AR outperformed both other techniques, particularly for oblique trajectories (p < 0.001). For perpendicular trajectories, it only outperformed proprioception guidance (p = 0.04). Target plots revealed an important scatter perpendicular to the longitudinal axis of the log during freehand and proprioception-guided drilling, especially for oblique trajectories. This inaccuracy disappeared during AR-guided drilling. As such, we were able to conclude that AR guidance using inside-out infrared tracking reduced angular uncertainty during directional drilling, resulting in improved drilling accuracy. This improvement was particularly noticeable for complex trajectories and angles. The benefits of AR guidance were observed across all experience levels, highlighting its potential for orthopedic applications. We believe this study opens the way for the methodical evaluation of AR guidance in specific orthopedic use cases.
UR - http://www.scopus.com/inward/record.url?scp=85207371417&partnerID=8YFLogxK
U2 - 10.1038/s41598-024-76132-3
DO - 10.1038/s41598-024-76132-3
M3 - Article
SN - 2045-2322
VL - 14
JO - Scientific Reports - Nature
JF - Scientific Reports - Nature
IS - 1
M1 - 25269
ER -