Automated freeform imaging system design with generalized ray tracing and simultaneous multi-surface analytic calculation

Onderzoeksoutput: Article

Samenvatting

Recently, freeform optics has been widely used due to its unprecedented compactness and high performance, especially in the reflective designs for broad-wavelength imaging applications. Here, we present a generalized differentiable ray tracing approach suitable for most optical surfaces. The established automated freeform design framework simultaneously calculates multi-surface coefficients with merely the system geometry known, very fast for generating abundant feasible starting points. In addition, we provide a "double-pass surface" strategy with desired overlap (not mutually centered) that enables a component reduction for very compact yet high-performing designs. The effectiveness of the method is firstly demonstrated by designing a wide field-of-view, fast f-number, four-mirror freeform telescope. Another example shows a two-freeform, three-mirror, four-reflection design with high compactness and cost-friendly considerations with a double-pass spherical mirror. The present work provides a robust design scheme for reflective freeform imaging systems in general, and it unlocks a series of new 'double-pass surface' designs for very compact, high-performing freeform imaging systems. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Originele taal-2English
Pagina's (van-tot)17227-17245
Aantal pagina's19
TijdschriftOptics Express
Volume29
Nummer van het tijdschrift11
DOI's
StatusPublished - 24 mei 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Automated freeform imaging system design with generalized ray tracing and simultaneous multi-surface analytic calculation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit