Best next preference prediction based on LSTM and multi-level Interactions

Ivett Elena Fuentes Herrera, Gonzalo Nápoles, Leticia Arco, Koen Vanhoof

Onderzoeksoutput: Conference paper

2 Citaten (Scopus)

Samenvatting

Predict customer buying behavior is an important task for improving direct marketing campaigns, offering the best possible experiences, and providing personalization in the customer journey trip. Improving how models capture the sequential information from transactional data is essential to learn the customer buying order and repetitive buying patterns to generate recommendations over time. In this paper, we propose the deep neural network approach DeepCBPP, which models the sequence prediction problem as a multi-class classification problem and takes the LSTM neural network as the base of the training process. Our main contributions rely on a new sequence customer representation approach based on multi-level interactions of the most recent influenced items, which allows predicting preferences without sophisticated feature engineering. The simulations using 12 datasets from a real-world problem achieve competitive results compared to the state-of-the-art sequence prediction models supporting the effectiveness of our proposal.
Originele taal-2English
TitelIntelligent Systems and Applications
SubtitelProceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 1
RedacteurenKohei Arai
UitgeverijSpringer
Pagina's682-699
Aantal pagina's18
VolumeLNNS 294
ISBN van elektronische versie978-3-030-82193-7
ISBN van geprinte versie978-3-030-82192-0
DOI's
StatusPublished - 4 aug 2021
EvenementIntelligent Systems Conference - Amsterdam, Netherlands
Duur: 2 sep 20213 sep 2021
https://saiconference.com/IntelliSys

Publicatie series

NaamLecture Notes in Networks and Systems
UitgeverijSpringer
Nummer1
Volume294
ISSN van geprinte versie2367-3370
ISSN van elektronische versie367-3389

Conference

ConferenceIntelligent Systems Conference
Verkorte titelIntelliSys
Land/RegioNetherlands
StadAmsterdam
Periode2/09/213/09/21
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Best next preference prediction based on LSTM and multi-level Interactions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit