Bounds on Multi Asset Derivatives via Neural Networks

Carole Bernard, Luca De Gennaro

Onderzoeksoutput: Articlepeer review

6 Citaten (Scopus)
26 Downloads (Pure)

Samenvatting

Using neural networks, we compute bounds on the prices of multi-asset derivatives given information on prices of related payoffs. As a main example, we focus on European basket options and include information on the prices of other similar options, such as spread options and/or basket options on subindices. We show that, in most cases, adding further constraints gives rise to bounds that are considerably tighter. Our approach follows the literature on constrained optimal transport and, in particular, builds on the work of Eckstein & Kupper (2018) [Computation of optimal transport and related hedging problems via penalization and neural networks, Appl. Math. Optimiz. 1-29].

Originele taal-2English
Artikelnummer2050050
Aantal pagina's20
TijdschriftInternational Journal of Theoretical and Applied Finance
Volume23
Nummer van het tijdschrift8
DOI's
StatusPublished - dec 2020

Vingerafdruk

Duik in de onderzoeksthema's van 'Bounds on Multi Asset Derivatives via Neural Networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit