Cameron–Liebler k-sets in subspaces and non-existence conditions

Onderzoeksoutput: Articlepeer review

3 Citaten (Scopus)
16 Downloads (Pure)


In this article we generalize the concepts that were used in the PhD thesis of Drudge to classify Cameron–Liebler line classes in PG(n,q),n≥3, to Cameron–Liebler sets of k-spaces in PG(n,q) and AG(n,q). In his PhD thesis, Drudge proved that every Cameron–Liebler line class in PG(n,q) intersects every 3-dimensional subspace in a Cameron–Liebler line class in that subspace. We are using the generalization of this result for sets of k-spaces in PG(n,q) and AG(n,q). Together with a basic counting argument this gives a very strong non-existence condition, n≥3k+3. This condition can also be improved for k-sets in AG(n,q), with n≥2k+2.
Originele taal-2English
Pagina's (van-tot)633-651
Aantal pagina's19
TijdschriftDes. Codes Cryptogr.
Nummer van het tijdschrift3
Vroegere onlinedatum8 jan 2022
StatusPublished - mrt 2022


Duik in de onderzoeksthema's van 'Cameron–Liebler k-sets in subspaces and non-existence conditions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit