Cliff–Weiss inequalities and the Zassenhaus Conjecture

Leo Margolis, Angel Del Rio

Onderzoeksoutput: Articlepeer review

5 Citaten (Scopus)


Let N be a nilpotent normal subgroup of the finite group G. Assume that u is a unit of finite order in the integral group ring ZG of G which maps to the identity under the linear extension of the natural homomorphism G -> G/N. We show how a result of Cliff and Weiss can be used to derive linear inequalities on the partial augmentations of u and apply this to the study of the Zassenhaus Conjecture. This conjecture states that any unit of finite order in ZG is conjugate in the rational group algebra of G to an element in ±G.
Originele taal-2English
Pagina's (van-tot)292-319
Aantal pagina's28
TijdschriftJournal of Algebra
StatusPublished - 1 aug 2018


Duik in de onderzoeksthema's van 'Cliff–Weiss inequalities and the Zassenhaus Conjecture'. Samen vormen ze een unieke vingerafdruk.

Citeer dit