Compositionality Unlocks Deep Interpretable Models

Thomas Dooms, Ward Gauderis, Geraint Wiggins, Jose Antonio Oramas Mogrovejo

Onderzoeksoutput: Conference paper

Samenvatting

We propose $\chi$-net, an intrinsically interpretable architecture combining the compositional multilinear structure of tensor networks with the expressivity and efficiency of deep neural networks. $\chi$-nets retain SoTA accuracy across tasks. Our novel, efficient diagonalisation algorithm, ODT, reveals linear low-rank structure in a multilayer SVHN model. We use this structure for weight-based interpretability and model compression.
Originele taal-2English
TitelCompositionality Unlocks Deep Interpretable Models
UitgeverijAAAI
Aantal pagina's10
StatusPublished - 4 mrt. 2025
EvenementConnecting Low-Rank Representations in AI : At the 39th Annual AAAI Conference on Artificial Intelligence - Pennsylvania Convention Center, Philadelphia, United States
Duur: 3 mrt. 20254 mrt. 2025
Congresnummer: 1
https://april-tools.github.io/colorai/

Workshop

WorkshopConnecting Low-Rank Representations in AI
Verkorte titelCoLoRAI
Land/RegioUnited States
StadPhiladelphia
Periode3/03/254/03/25
Internet adres

Bibliografische nota

Both authors, Thomas Dooms and Ward Gauderis, contributed equally.

Citeer dit