TY - JOUR
T1 - Coupling of chiral and achiral stationary phases in supercritical fluid chromatography
T2 - Evaluating and improving retention prediction
AU - Riasová, Petra
AU - Jáč, Pavel
AU - Polášek, Miroslav
AU - Vander Heyden, Yvan
AU - Mangelings, Debby
N1 - Copyright © 2022. Published by Elsevier B.V.
PY - 2022/3/29
Y1 - 2022/3/29
N2 - Isomers and stereoisomers are always challenging to separate. Column coupling may provide improved chromatographic selectivity, necessary for the separation of the compounds with similar chemical and structural properties. The relatively low viscosity of supercritical fluids, used as mobile phases allows for the coupling of several columns in series in supercritical fluid chromatography (SFC), without exceeding the pressure limits of the system. The aim of this study is to propose reliable prediction of the retention behaviour of analytes on a coupled column system, based on a limited number of initial analyses. The chiral compounds atenolol, ephedrine, propranolol, mianserin, labetalol and nadolol, besides the diastereomers quinine and quinidine, and the structural isomers of aminophenol and aminocresol were used as model analytes. The retention behaviour of the analytes was determined on the individual chiral columns Lux Cellulose-1, Lux Cellulose-2, Lux Cellulose-3, Lux Cellulose-4, Lux Amylose-2 and the achiral columns Luna NH2, Luna Silica, Synergi RP and FluoroSep RP. The mobile phase was composed of CO2 mixed with 20% (v/v) MeOH, which contained 0.1% (v/v) trifluoroacetic acid and 0.1% (v/v) isopropylamine. The retention factors of the analytes on coupled stationary phases were predicted, and subsequently compared to the experimentally obtained ones. Relative deviations of predicted and experimental retention factors were in range from 0.00% to 51.91%. Flow rate and back pressure of the screening conditions were adjusted to improve prediction precision on four column combinations, with varying success rates. The average relative deviations of retention factors were reduced to 2.84% - 6.59% by adjusting flow rate, and to 2.30% - 8.57% by adjusting back pressure. The most successful approach, flow rate adjustment, was then applied to select a column combination providing improved resolution of the structurally similar components of silymarin extract.
AB - Isomers and stereoisomers are always challenging to separate. Column coupling may provide improved chromatographic selectivity, necessary for the separation of the compounds with similar chemical and structural properties. The relatively low viscosity of supercritical fluids, used as mobile phases allows for the coupling of several columns in series in supercritical fluid chromatography (SFC), without exceeding the pressure limits of the system. The aim of this study is to propose reliable prediction of the retention behaviour of analytes on a coupled column system, based on a limited number of initial analyses. The chiral compounds atenolol, ephedrine, propranolol, mianserin, labetalol and nadolol, besides the diastereomers quinine and quinidine, and the structural isomers of aminophenol and aminocresol were used as model analytes. The retention behaviour of the analytes was determined on the individual chiral columns Lux Cellulose-1, Lux Cellulose-2, Lux Cellulose-3, Lux Cellulose-4, Lux Amylose-2 and the achiral columns Luna NH2, Luna Silica, Synergi RP and FluoroSep RP. The mobile phase was composed of CO2 mixed with 20% (v/v) MeOH, which contained 0.1% (v/v) trifluoroacetic acid and 0.1% (v/v) isopropylamine. The retention factors of the analytes on coupled stationary phases were predicted, and subsequently compared to the experimentally obtained ones. Relative deviations of predicted and experimental retention factors were in range from 0.00% to 51.91%. Flow rate and back pressure of the screening conditions were adjusted to improve prediction precision on four column combinations, with varying success rates. The average relative deviations of retention factors were reduced to 2.84% - 6.59% by adjusting flow rate, and to 2.30% - 8.57% by adjusting back pressure. The most successful approach, flow rate adjustment, was then applied to select a column combination providing improved resolution of the structurally similar components of silymarin extract.
KW - Chiral and achiral separations
KW - Column coupling
KW - Retention prediction
KW - Supercritical fluid chromatography
UR - http://www.scopus.com/inward/record.url?scp=85124630461&partnerID=8YFLogxK
U2 - 10.1016/j.chroma.2022.462883
DO - 10.1016/j.chroma.2022.462883
M3 - Article
C2 - 35182912
VL - 1667
JO - Journal of Chromatography. A
JF - Journal of Chromatography. A
SN - 0021-9673
M1 - 462883
ER -