Customer Interaction Networks based on Multiple Instance Similarities

Ivett Elena Fuentes Herrera, Gonzalo Nápoles, Leticia Arco, Koen Vanhoof

Onderzoeksoutput: Chapterpeer review

Samenvatting

Understanding customer behaviors is deemed crucial to improve customers' satisfaction and loyalty, which eventually is materialized in increased revenue. This paper tackles this challenge by using complex networks and multiple instance reasoning to examine the network structure of Customer Purchasing Behaviors. Our main contributions rely on a new multiple instance similarity to measure the interaction among customers based on the mutual information theory focuses on the customers' bags, a new network construction approach involving customers, orders and products, and a new measure for evaluating its internal consistency. The simulations using 12 real-world problems support the eectiveness of our proposal.
Originele taal-2English
TitelBusiness Information Systems
Subtitel23rd International Conference on Business Information Systems
RedacteurenWitold Abramowicz, Gary Klein
UitgeverijSpringer Verlag
Pagina's279-290
Aantal pagina's12
Volume389
ISBN van elektronische versie978-3-030-53337-3
ISBN van geprinte versie978-3-030-53336-6
DOI's
StatusPublished - 22 jul 2020
EvenementInternational Conference on Business Information Systems - University of Colorado, Colorado Springs, United States
Duur: 8 jun 202010 jun 2020
Congresnummer: 23
https://bisconf.org/2020/

Publicatie series

NaamLecture Notes in Business Information Processing
UitgeverijSpringer

Conference

ConferenceInternational Conference on Business Information Systems
Verkorte titelBIS
Land/RegioUnited States
StadColorado Springs
Periode8/06/2010/06/20
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Customer Interaction Networks based on Multiple Instance Similarities'. Samen vormen ze een unieke vingerafdruk.

Citeer dit