Data driven discrete-time parsimonious identification of a nonlinear state-space model for a weakly nonlinear system with short data record

Rishi Relan, Koen Tiels, Anna Marconato, Joannes Schoukens

Onderzoeksoutput: Articlepeer review

7 Citaten (Scopus)

Samenvatting

Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.
Originele taal-2English
Pagina's (van-tot)929-943
Aantal pagina's15
TijdschriftMechanical Systems and Signal Processing
Volume104
Nummer van het tijdschrift5
Vroegere onlinedatum2017
DOI's
StatusPublished - mei 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Data driven discrete-time parsimonious identification of a nonlinear state-space model for a weakly nonlinear system with short data record'. Samen vormen ze een unieke vingerafdruk.

Citeer dit