Samenvatting
Mobility data typically covers both the spatial and temporal domain. The literature lacks methods which fully exploit the richness and at the same time manage the complexity of such data sets. Moreover, mobility data is often characterised by poor quality. In this paper two novel techniques are proposed that facilitate the advanced analysis of (spatio-temporal) mobility data. First, an incremental imputation technique is realised, which reduces substantially the amount of missing data by cleverly exploiting the spatio-temporal properties of historical data. Second, a multi-step non-negative matrix factorisation workflow is conceived allowing to extract spatio-temporal fingerprints of traffic trajectories of interest. The validation of both methods on a data set of vehicle counts from multiple adjacent locations in the Brussels-Capital Region (Belgium) produced already very promising results.
Originele taal-2 | English |
---|---|
Titel | 2021 International Conference on Data Mining Workshops (ICDMW) |
Redacteuren | Bing Xue, Mykola Pechenizkiy, Yun Sing Koh |
Plaats van productie | Auckland, New Zealand |
Uitgeverij | IEEE |
Pagina's | 750-759 |
Aantal pagina's | 10 |
ISBN van elektronische versie | 978-1-6654-2427-1 |
ISBN van geprinte versie | 978-1-6654-2428-8 |
DOI's | |
Status | Published - 7 dec 2021 |
Evenement | 21st IEEE International Conference on Data Mining - Auckland, New Zealand Duur: 7 dec 2021 → 10 dec 2021 Congresnummer: 21 https://icdm2021.auckland.ac.nz |
Publicatie series
Naam | IEEE International Conference on Data Mining Workshops, ICDMW |
---|---|
Volume | 2021-December |
ISSN van geprinte versie | 2375-9232 |
ISSN van elektronische versie | 2375-9259 |
Conference
Conference | 21st IEEE International Conference on Data Mining |
---|---|
Verkorte titel | IEEE ICDM |
Land/Regio | New Zealand |
Stad | Auckland |
Periode | 7/12/21 → 10/12/21 |
Internet adres |