Dominating sets in finite generalized quadrangles

Lisa Hernandez Lucas, Tamás Héger

Onderzoeksoutput: Article

15 Downloads (Pure)

Samenvatting

A dominating set in a graph is a set of vertices such that each vertex not in the set has a neighbor in the set. The domination number is the smallest size of a dominating set. We consider this problem in the incidence graph of a generalized quadrangle. We show that the domination number of a generalized quadrangle with parameters s and t is at most 2st+1, and we prove that this bound is sharp if s = t or if s = q - 1 and t = q + 1. Moreover, we give a complete classification of smallest dominating sets in generalized quadrangles where s = t, and give some general results for small dominating sets in the general case.

Originele taal-2English
Pagina's (van-tot)61-76
Aantal pagina's16
TijdschriftArs Mathematica Contemporanea
Volume19
Nummer van het tijdschrift1
DOI's
StatusPublished - 2020

Vingerafdruk

Duik in de onderzoeksthema's van 'Dominating sets in finite generalized quadrangles'. Samen vormen ze een unieke vingerafdruk.

Citeer dit