Dynamic Compensation of Nonlinear Sensors by a Learning-From-Examples Approach

Anna Marconato, . Hu Mingqing, Andrea Boni, D. Petri

Onderzoeksoutput: Articlepeer review

20 Citaten (Scopus)

Samenvatting

In this paper, we address the problem of nonlinear sensor dynamic compensation that will be performed on board wireless sensor network nodes. To this aim, we design suitable reduced-complexity learning-from-example algorithms and implement them on resource-constrained devices, namely, 8-bit microcontrollers. The proposed approach is validated with simulations on different examples of nonlinear sensor models.
Originele taal-2English
Pagina's (van-tot)1689-1694
Aantal pagina's6
TijdschriftIEEE Transactions on Instrumentation and Measurement
Volume57
StatusPublished - 1 aug. 2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Dynamic Compensation of Nonlinear Sensors by a Learning-From-Examples Approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit