E$_{6(6)}$ Exceptional Drinfel'd Algebras

Onderzoeksoutput: Articlepeer review

18 Citaten (Scopus)
34 Downloads (Pure)

Samenvatting

The exceptional Drinfel'd algebra (EDA) is a Leibniz algebra introduced to provide an algebraic underpinning with which to explore generalised notions of U-duality in M-theory. In essence it provides an M-theoretic analogue of the way a Drinfel'd double encodes generalised T-dualities of strings. In this note we detail the construction of the EDA in the case where the regular U-duality group is $E_{6(6)}$. We show how the EDA can be realised geometrically as a generalised Leibniz parallelisation of the exceptional generalised tangent bundle for a six-dimensional group manifold $G$, endowed with a Nambu-Lie structure. When the EDA is of coboundary type, we show how a natural generalisation of the classical Yang-Baxter equation arises. The construction is illustrated with a selection of examples including some which embed Drinfel'd doubles and others that are not of this type.
Originele taal-2English
Artikelnummer20
Aantal pagina's28
TijdschriftJHEP
Volume2021
Nummer van het tijdschrift1
DOI's
StatusPublished - 5 jan 2021

Bibliografische nota

27 pages

Vingerafdruk

Duik in de onderzoeksthema's van 'E$_{6(6)}$ Exceptional Drinfel'd Algebras'. Samen vormen ze een unieke vingerafdruk.

Citeer dit