Projecten per jaar
Samenvatting
The exceptional Drinfel'd algebra (EDA) is a Leibniz algebra introduced to provide an algebraic underpinning with which to explore generalised notions of U-duality in M-theory. In essence it provides an M-theoretic analogue of the way a Drinfel'd double encodes generalised T-dualities of strings. In this note we detail the construction of the EDA in the case where the regular U-duality group is $E_{6(6)}$. We show how the EDA can be realised geometrically as a generalised Leibniz parallelisation of the exceptional generalised tangent bundle for a six-dimensional group manifold $G$, endowed with a Nambu-Lie structure. When the EDA is of coboundary type, we show how a natural generalisation of the classical Yang-Baxter equation arises. The construction is illustrated with a selection of examples including some which embed Drinfel'd doubles and others that are not of this type.
Originele taal-2 | English |
---|---|
Artikelnummer | 20 |
Aantal pagina's | 28 |
Tijdschrift | JHEP |
Volume | 2021 |
Nummer van het tijdschrift | 1 |
DOI's | |
Status | Published - 5 jan 2021 |
Bibliografische nota
27 pagesVingerafdruk
Duik in de onderzoeksthema's van 'E$_{6(6)}$ Exceptional Drinfel'd Algebras'. Samen vormen ze een unieke vingerafdruk.-
SRP8: SRP (Zwaartepunt): Hoge-Energiefysica
D'Hondt, J., Van Eijndhoven, N., Craps, B. & Buitink, S.
1/11/12 → 31/10/24
Project: Fundamenteel
-
FWOAL903: Dualiteit, Meetkunde en Tijdruimte
Sevrin, A., Blair, C. & Thompson, D.
1/01/19 → 31/12/22
Project: Fundamenteel