Embedding of RCD(K,N) spaces in L2 via eigenfunctions

Luigi Ambrosio, Shouhei Honda, Jacobus W. Portegies, David Tewodrose

Onderzoeksoutput: Articlepeer review

14 Citaten (Scopus)

Samenvatting

In this paper we study the family of embeddings Φt of a compact RCD(K,N) space (X,d,m) into L2(X,m) via eigenmaps. Extending part of the classical results [10,11] known for closed Riemannian manifolds, we prove convergence as t↓0 of the rescaled pull-back metrics ΦtgL2 in L2(X,m) induced by Φt. Moreover we discuss the behavior of ΦtgL2 with respect to measured Gromov-Hausdorff convergence and t. Applications include the quantitative Lp-convergence in the noncollapsed setting for all p<∞, a result new even for closed Riemannian manifolds and Alexandrov spaces.

Originele taal-2English
Artikelnummer108968
Aantal pagina's71
TijdschriftJournal of Functional Analysis
Volume280
Nummer van het tijdschrift10
DOI's
StatusPublished - 15 mei 2021

Bibliografische nota

Publisher Copyright:
© 2021 Elsevier Inc.

Vingerafdruk

Duik in de onderzoeksthema's van 'Embedding of RCD(K,N) spaces in L2 via eigenfunctions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit