Estimating and Controlling the Uncertainty of Learning Machines

Anna Marconato, Andrea Boni, D. Petri

Onderzoeksoutput: Conference paper

2 Citaten (Scopus)

Samenvatting

The problem of estimating model uncertainty of learning machines (LMs) is becoming a subject of great interest because of the wide application of such kind of methodologies for solving real-world problems. In this work we will provide a general overview on estimating and controlling uncertainity of LMs, by describing the algorithms, the theory and the empirical methods used to obtain a robust estimation. In the end we address the problem of uncertainty estimation when devices with limited resources are considered for the hardware implementation.
Originele taal-2English
TitelAMUEM 2006 – IEEE International Workshop on Advanced Methods for Uncertainty Estimation in Measurement, April 20-21, 2006, Trento, Italy
Pagina's46-50
Aantal pagina's5
StatusPublished - 20 apr 2006
EvenementUnknown -
Duur: 20 apr 2006 → …

Conference

ConferenceUnknown
Periode20/04/06 → …

Vingerafdruk

Duik in de onderzoeksthema's van 'Estimating and Controlling the Uncertainty of Learning Machines'. Samen vormen ze een unieke vingerafdruk.

Citeer dit