Experimental validation of a data-driven step input estimation method for dynamic measurements

Gustavo Quintana-Carapia, Ivan Markovsky, Rik Pintelon, Péter Zoltán Csurcsia, Dieter Toon Verbeke

Onderzoeksoutput: Article

50 Downloads (Pure)


Simultaneous fast and accurate measurement is still a challenging and active problem in metrology. A sensor is a dynamic system that produces a transient response. For fast measurements, the unknown input needs to be estimated using the sensor transient response. When a model of the sensor exists, standard compensation filter methods can be used to estimate the input. If a model is not available, either an adaptive filter is used or a sensor model is identified before the input estimation. Recently, a signal processing method was proposed to avoid the identification stage and estimate directly the value of a step input from the sensor response. This data-driven step input estimation method requires only the order of the sensor dynamics and the sensor static gain. To validate the data-driven step input estimation method, in this article, the uncertainty of the input estimate is studied and illustrated on simulation and real-life weighing measurements. It was found that the predicted mean-squared error of the input estimate is close to an approximate Cramér-Rao lower bound for biased estimators.

Originele taal-2English
Pagina's (van-tot)4843-4851
Aantal pagina's9
TijdschriftIEEE Transactions on Instrumentation and measurement
Nummer van het tijdschrift7
StatusPublished - 1 jul 2020


Duik in de onderzoeksthema's van 'Experimental validation of a data-driven step input estimation method for dynamic measurements'. Samen vormen ze een unieke vingerafdruk.

Citeer dit