Exploiting ion‐mobility mass spectrometry for unraveling proteome complexity

Onderzoeksoutput: Articlepeer review


Ion mobility spectrometry-mass spectrometry (IMS-MS) is experiencing rapid growth in proteomic studies, driven by its enhancements in dynamic range and throughput, increasing the quantitation precision, and the depth of proteome coverage. The core principle of ion mobility spectrometry is to separate ions in an inert gas under the influence of an electric field based on differences in drift time. This minireview provides an introduction to IMS operation modes and a description of advantages and limitations is presented. Moreover, the principles of trapped IMS-MS (TIMS-MS), including parallel accumulation-serial fragmentation are discussed. Finally, emerging applications linked to TIMS focusing on sample throughput (in clinical proteomics) and sensitivity (single-cell proteomics) are reviewed, and the possibilities of intact protein analysis are discussed.
Originele taal-2English
TijdschriftJournal of Separation Science
Nummer van het tijdschrift18
StatusPublished - 25 sep 2023

Bibliografische nota

Publisher Copyright:
© 2023 Wiley-VCH GmbH.


Duik in de onderzoeksthema's van 'Exploiting ion‐mobility mass spectrometry for unraveling proteome complexity'. Samen vormen ze een unieke vingerafdruk.

Citeer dit