Projecten per jaar
Samenvatting
We explore geometries that give rise to a novel algebraic structure, the Exceptional Drinfeld Algebra, which has recently been proposed as an approach to study generalised U-dualities, similar to the non-Abelian and Poisson-Lie generalisations of T-duality. This algebra is generically not a Lie algebra but a Leibniz algebra, and can be realised in exceptional generalised geometry or exceptional field theory through a set of frame fields giving a generalised parallelisation. We provide examples including “three-algebra geometries”, which encode the structure constants for three-algebras and in some cases give novel uplifts for CSO(p, q, r) gaugings of seven-dimensional maximal supergravity. We also discuss the M-theoretic embedding of both non-Abelian and Poisson-Lie T-duality.
Originele taal-2 | English |
---|---|
Artikelnummer | 151 |
Aantal pagina's | 34 |
Tijdschrift | The Journal of high energy physics |
Volume | 2020 |
Nummer van het tijdschrift | 9 |
DOI's | |
Status | Published - 23 sep 2020 |
Vingerafdruk
Duik in de onderzoeksthema's van 'Exploring exceptional Drinfeld geometries'. Samen vormen ze een unieke vingerafdruk.-
SRP8: SRP (Zwaartepunt): Hoge-Energiefysica
D'Hondt, J., Van Eijndhoven, N., Craps, B. & Buitink, S.
1/11/12 → 31/10/24
Project: Fundamenteel
-
FWOAL903: Dualiteit, Meetkunde en Tijdruimte
Sevrin, A., Blair, C. & Thompson, D.
1/01/19 → 31/12/22
Project: Fundamenteel