Feature Extraction and Classification Methods for Ultra-Sonic and Radar Mine Detection

Onderzoeksoutput: Conference paper

Samenvatting

In this paper the problem of detecting buried anti-personnel mines is tackled in the broader context of a general classication problem: determining the likelihood of an unknown pattern (feature vector), extracted from the impulse radar or ultra sound signals, being part of a mine. In our approach two scenarios are considered. In a rst scenario we use a single classier with a mixed measurement vector, while in a second scenario a strategy for combining several classiers, using distinct features is explained.
Originele taal-2English
TitelCESA'98, 2nd IEEE- IMACS Int. Multiconference on Computational Engineering in Systems Applications; Tunis, Tunisia, April 1-4,1998.
UitgeverijSecond Int. Multiconference on Computational Engineering in Systems Applications (CESA 98), pp. 82 - 87, Tunis, Tunisia.
Pagina's82-87
Aantal pagina's6
StatusPublished - 1 apr 1998

Bibliografische nota

Second Int. Multiconference on Computational Engineering in Systems Applications (CESA 98), pp. 82 - 87, Tunis, Tunisia.

Vingerafdruk

Duik in de onderzoeksthema's van 'Feature Extraction and Classification Methods for Ultra-Sonic and Radar Mine Detection'. Samen vormen ze een unieke vingerafdruk.

Citeer dit