Filter interpretation of regularized impulse response modeling

Onderzoeksoutput: Poster

Samenvatting

In this work, we look at Bayesian regularization for FIR modeling from a different angle. Instead of focusing directly on the kernel matrix, and on how the information about the covariance of the parameters is encoded in such a matrix, we address its inverse, the regularization matrix, and we look more closely at how the parameters are penalized in the cost function. This approach allows one to embed prior knowledge directly in the regularization term, as a prefiltering of the model parameters. In this framework, new regularization structures can be designed, giving the user the freedom to adapt the problem formulation to his/her specifications.
Originele taal-2English
StatusPublished - 20 sep. 2015
EvenementERNSI WORKSHOP 2016 - Cison di Valmarino, Italy
Duur: 25 sep. 201628 sep. 2016

Workshop

WorkshopERNSI WORKSHOP 2016
Land/RegioItaly
StadCison di Valmarino
Periode25/09/1628/09/16

Vingerafdruk

Duik in de onderzoeksthema's van 'Filter interpretation of regularized impulse response modeling'. Samen vormen ze een unieke vingerafdruk.

Citeer dit