Fixed-size kernel models with SVD truncation schemes

Ricardo Castro, Siamak Mehrkanoon, Anna Marconato, Joannes Schoukens, Johan Suykens

Onderzoeksoutput: Meeting abstract (Book)

Samenvatting

Criteria for assessing the generalization performance take the form Prediction Error = training error + complexity term. The complexity term represents a penalty growing with the number of free parameters in the model. We consider different versions of fixed-size kernel models related to fixed-size least squares support vector machines (FS-LSSVM) and consider the effective degrees of freedom (EDF) as the notion for model complexity.
Originele taal-2English
TitelBenelux meeting, Heijden, The Netherlands, March 25-27, 2014
Pagina's77
Aantal pagina's1
StatusPublished - 25 mrt. 2014
Evenement33rd Benelux Meeting on Systems and Control - Heijen, Netherlands
Duur: 25 mrt. 201427 mrt. 2014

Conference

Conference33rd Benelux Meeting on Systems and Control
Land/RegioNetherlands
StadHeijen
Periode25/03/1427/03/14

Vingerafdruk

Duik in de onderzoeksthema's van 'Fixed-size kernel models with SVD truncation schemes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit