Free Actions of Compact Quantum Groups on Unital C*-Algebras

Kenny De Commer, Piotr .M. Hajac, Paul Baum

Onderzoeksoutput: Articlepeer review

18 Citaten (Scopus)

Samenvatting

Let F be a field, Γ a finite group, and Map(Γ, F) the Hopf algebra of all set-theoretic maps Γ → F. If E is a finite field extension of F and Γ is its Galois group, the extension is Galois if and only if the canonical map from E ⊗_F E to E ⊗_F Map(Γ, F) resulting from viewing E as a Map(Γ, F)-comodule is an isomorphism. Similarly, a finite covering space is regular if and only if the analogous canonical map is an isomorphism. In this paper, we extend this point of view to actions of compact quantum groups on unital C*-algebras. We prove that such an action is free if and only if the canonical map (obtained using the underlying Hopf algebra of the compact quantum group) is an isomorphism. In particular, we are able to express the freeness of a compact Hausdorff topological group action on a compact Hausdorff topological space in algebraic terms. As an application, we show that a field of free actions on unital C*-algebras yields a global free action.
Originele taal-2English
Artikelnummer23
Pagina's (van-tot)825–849
Aantal pagina's24
TijdschriftDocumenta Mathematica
Volume22
StatusPublished - 2017

Vingerafdruk

Duik in de onderzoeksthema's van 'Free Actions of Compact Quantum Groups on Unital C*-Algebras'. Samen vormen ze een unieke vingerafdruk.

Citeer dit