Holistic Representation Learning for Multitask Trajectory Anomaly Detection

Onderzoeksoutput: Conference paper

2 Citaten (Scopus)
68 Downloads (Pure)

Samenvatting

Video anomaly detection deals with the recognition of abnormal events in videos. Apart from the visual signal, video anomaly detection has also been addressed with the use of skeleton sequences. We propose a holistic representation of skeleton trajectories to learn expected motions across segments at different times. Our approach uses multitask learning to reconstruct any continuous unobserved temporal segment of the trajectory allowing the extrapolation of past or future segments and the interpolation of in-between segments. We use an end-to-end attention-based encoder-decoder. We encode temporally occluded trajectories, jointly learn latent representations of the occluded segments, and reconstruct trajectories based on expected motions across different temporal segments. Extensive experiments on three trajectory-based video anomaly detection datasets show the advantages and effectiveness of our approach with state-of-the-art results on anomaly detection in skeleton trajectories.
Originele taal-2English
TitelProceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
UitgeverijIEEE
Pagina's6729-6739
Aantal pagina's11
ISBN van geprinte versie9798350318920
DOI's
StatusPublished - 3 jan 2024
EvenementIEEE/CVF Winter Conference on Applications of Computer Vision - Waikoloa, United States
Duur: 4 jan 20248 jan 2024
https://wacv2024.thecvf.com/

Publicatie series

NaamProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024

Conference

ConferenceIEEE/CVF Winter Conference on Applications of Computer Vision
Verkorte titelWACV
Land/RegioUnited States
StadWaikoloa
Periode4/01/248/01/24
Internet adres

Bibliografische nota

Publisher Copyright:
© 2024 IEEE.

Vingerafdruk

Duik in de onderzoeksthema's van 'Holistic Representation Learning for Multitask Trajectory Anomaly Detection'. Samen vormen ze een unieke vingerafdruk.

Citeer dit