Projecten per jaar
Samenvatting
Video anomaly detection deals with the recognition of abnormal events in videos. Apart from the visual signal, video anomaly detection has also been addressed with the use of skeleton sequences. We propose a holistic representation of skeleton trajectories to learn expected motions across segments at different times. Our approach uses multitask learning to reconstruct any continuous unobserved temporal segment of the trajectory allowing the extrapolation of past or future segments and the interpolation of in-between segments. We use an end-to-end attention-based encoder-decoder. We encode temporally occluded trajectories, jointly learn latent representations of the occluded segments, and reconstruct trajectories based on expected motions across different temporal segments. Extensive experiments on three trajectory-based video anomaly detection datasets show the advantages and effectiveness of our approach with state-of-the-art results on anomaly detection in skeleton trajectories.
Originele taal-2 | English |
---|---|
Titel | Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) |
Uitgeverij | IEEE |
Pagina's | 6729-6739 |
Aantal pagina's | 11 |
ISBN van geprinte versie | 9798350318920 |
DOI's | |
Status | Published - 3 jan 2024 |
Evenement | IEEE/CVF Winter Conference on Applications of Computer Vision - Waikoloa, United States Duur: 4 jan 2024 → 8 jan 2024 https://wacv2024.thecvf.com/ |
Publicatie series
Naam | Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 |
---|
Conference
Conference | IEEE/CVF Winter Conference on Applications of Computer Vision |
---|---|
Verkorte titel | WACV |
Land/Regio | United States |
Stad | Waikoloa |
Periode | 4/01/24 → 8/01/24 |
Internet adres |
Bibliografische nota
Publisher Copyright:© 2024 IEEE.
Vingerafdruk
Duik in de onderzoeksthema's van 'Holistic Representation Learning for Multitask Trajectory Anomaly Detection'. Samen vormen ze een unieke vingerafdruk.Projecten
- 1 Actief