How to Frame a Mathematician: Modelling the Cognitive Background of Proofs

Bernhard Fisseni, Deniz Sarikaya, Martin Schmitt, Bernhard Schröder

Onderzoeksoutput: ChapterResearchpeer review

7 Citaten (Scopus)

Samenvatting

Frames are a concept in knowledge representation that explains how the receiver, using background information, completes the information conveyed by the sender. This concept is used in different disciplines, most notably in cognitive linguistics and artificial intelligence. This paper argues that frames can serve as the basis for describing mathematical proofs. The usefulness of the concept is illustrated by giving a partial formalisation of proof frames, specifically focusing on induction proofs, and relevant parts of the mathematical theory within which the proofs are conducted; for the latter, we look at natural numbers and trees specifically.

Originele taal-2English
TitelSynthese Library
UitgeverijSpringer Science and Business Media B.V.
Pagina's417-436
Aantal pagina's20
ISBN van elektronische versie978-3-030-15655-8
ISBN van geprinte versie978-3-030-15654-1
DOI's
StatusPublished - 2019

Publicatie series

NaamSynthese Library
Volume407
ISSN van geprinte versie0166-6991
ISSN van elektronische versie2542-8292

Bibliografische nota

Publisher Copyright:
© 2019, Springer Nature Switzerland AG.

Vingerafdruk

Duik in de onderzoeksthema's van 'How to Frame a Mathematician: Modelling the Cognitive Background of Proofs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit