Identification of Wiener-Hammerstein Benchmark Data by Means of Support Vector Machines

Onderzoeksoutput: Conference paper

9 Citaten (Scopus)

Samenvatting

This work presents the identification of a Wiener-Hammerstein system by a learning-fromexamples approach, namely the Support Vector Machines for Regression, on the basis of a set of real-life benchmark data. A multi-objective optimization procedure based on genetic algorithms is employed in order to select the best model that describes the input-output relationship of the considered system. Training sets of reduced size are employed to analyze the effect on the accuracy performance.
Originele taal-2English
Titel15th IFAC Symposium on System Identification (SYSID 2009), July 6-8, 2009, St. Malo, France, pp 816-819
Pagina's816-819
Aantal pagina's4
StatusPublished - 6 jul. 2009
EvenementUnknown - Stockholm, Sweden
Duur: 21 sep. 200925 sep. 2009

Conference

ConferenceUnknown
Land/RegioSweden
StadStockholm
Periode21/09/0925/09/09

Vingerafdruk

Duik in de onderzoeksthema's van 'Identification of Wiener-Hammerstein Benchmark Data by Means of Support Vector Machines'. Samen vormen ze een unieke vingerafdruk.

Citeer dit