Improving the detection of shell alteration: Implications for sclerochronology

Rute Coimbra, Stefan Huck, Niels J. de Winter, Ulrich Heimhofer, Philippe Claeys

Onderzoeksoutput: Articlepeer review

5 Citaten (Scopus)
68 Downloads (Pure)

Samenvatting

Sclerochronology makes use of (fossil) shell-archives to establish records allowing for investigation of high-resolution environmental dynamics. Nevertheless, this potential can often not be fully exploited due to the interplay between paleoenvironmental variability, vital effects and the potential diagenetic modification of skeletal materials, which often results in highly complex records. A novel dynamic approach, aiming to separate pristine from altered shell material for paleoclimate and paleoenvironmental reconstructions is proposed. Seventeen fossil bivalve shells (requieniid rudists, pectinids and chondrodonts) from two neighbouring Lower Cretaceous (Albian) shallow-water sections (Lusitanian Basin, western Portugal) were analysed for their major and trace elemental compositions using high-resolution quantitative μXRF line scans. Their complex records were subject to a novel statistical analysis protocol, which tested mono- and multi-species datasets, as well as comparing shells from both locations. Characteristic elemental associations reveal the differential impact of early and late diagenetic alteration processes. The incorporation of elements associated with detrital contribution (Fe, Si, Al) is attributed to syn-depositional bioerosion (shell-boring). In clear contrast, shell-portions showing a strong correlation between Fe and Mn are indicative of later diagenetic alteration. The influence of each process is different at each site, revealing local differential alteration pathways. Mono-specific comparisons provides identical geochemical responses, suggesting that intra-specific differences do not control the observed elemental patterns. In contrast, inter-species tests rendered a clear separation in the way elements are incorporated in the shells of pectinids and requieniids (e.g., as evidenced by differences in Mg or Sr content). Such differences can be linked to differential biomineralization pathways, easily detected by the applied method. We present a new, dynamic method for distinguishing pristine from altered shell material, not relying on arbitrary diagenetic thresholds for trace element content. By clearly identifying shell-alteration pathways, syn- to post-depositional processes are recognized. A progressive cleaning of the elemental dataset allows paleoenvironmental studies to be based on the most pristine data, contributing to unravelling the complex interplay between climate, environmental dynamics and their impact on biomineralization processes and sclerochronological archives.
Originele taal-2English
Artikelnummer109968
TijdschriftPalaeogeography, Palaeoclimatology, Palaeoecology
Volume559
DOI's
StatusPublished - 1 dec 2020

Bibliografische nota

Funding Information:
R. Coimbra is supported by Fundação para a Ciência e Tecnologia- FCT, Portugal and the research unit GeoBiotec - UIDB/04035/2020 . Collection and preparation of fossil shell material was supported by DFG grant HE4467/6-1 to U. Heimhofer. PC thanks Research Foundation Flanders FWO-Hercules foundation for the acquisition of the μXRF instrument, and VUB Strategic Research. NdW is a Flemish Research Foundation (FWO; 12ZB220N ) post-doctoral fellow, and is supported by a MSCA Individual Fellowship ( H2020-MSCA-IF-2018 ; 843011 – UNBIAS ).

Funding Information:
R. Coimbra is supported by Fundação para a Ciência e Tecnologia- FCT, Portugal and the research unit GeoBiotec - UIDB/04035/2020. Collection and preparation of fossil shell material was supported by DFG grant HE4467/6-1 to U. Heimhofer. PC thanks Research Foundation Flanders FWO-Hercules foundation for the acquisition of the μXRF instrument, and VUB Strategic Research. NdW is a Flemish Research Foundation (FWO; 12ZB220N) post-doctoral fellow, and is supported by a MSCA Individual Fellowship (H2020-MSCA-IF-2018; 843011 – UNBIAS).

Publisher Copyright:
© 2020 Elsevier B.V.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'Improving the detection of shell alteration: Implications for sclerochronology'. Samen vormen ze een unieke vingerafdruk.

Citeer dit