TY - JOUR
T1 - Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma
AU - De Beck, Lien
AU - Awad, Robin Maximilian
AU - Basso, Veronica
AU - Casares, Noelia
AU - De Ridder, Kirsten
AU - De Vlaeminck, Yannick
AU - Gnata, Alessandra
AU - Goyvaerts, Cleo
AU - Lecocq, Quentin
AU - San José-Enériz, Edurne
AU - Verhulst, Stefaan
AU - Maes, Ken
AU - Vanderkerken, Karin
AU - Agirre, Xabier
AU - Prosper, Felipe
AU - Lasarte, Juan José
AU - Mondino, Anna
AU - Breckpot, Karine
N1 - Copyright © 2022 De Beck, Awad, Basso, Casares, De Ridder, De Vlaeminck, Gnata, Goyvaerts, Lecocq, San José-Enériz, Verhulst, Maes, Vanderkerken, Agirre, Prosper, Lasarte, Mondino and Breckpot.
PY - 2022/5/12
Y1 - 2022/5/12
N2 - Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.
AB - Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.
KW - DNA methyltransferase (DNMT)
KW - adoptive T cell therapies
KW - cancer vaccination
KW - dendritic cell vaccination
KW - epigenetic targeted therapy
KW - histone and DNA methylation/demethylation
KW - histone methyltransferase G9a
KW - melanoma
UR - http://www.scopus.com/inward/record.url?scp=85131224797&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2022.799636
DO - 10.3389/fimmu.2022.799636
M3 - Article
C2 - 35634329
VL - 13
JO - Frontiers in Immunology
JF - Frontiers in Immunology
SN - 1664-3224
M1 - 799636
ER -