2 Citaten (Scopus)

Samenvatting

The most popular class of Volterra nonlinear dynamical system is Wiener-Hammerstein system. A static nonlinearity, positioned between two dynamical sub-system constructs Wiener-Hammerstein (W-H) system. The best linear approximation (BLA) technique assembles two linear filters and the nonlinearity into a single filter for input and noisy output. The identification challenge resides in separating two filters. This work proposes Random Forest (RF) as a first alternative to do this. It is like the selection of holiday destinations based on the recommendation of random traveller. The proposed technique supports reasonably high noise level and does not require to optimize all models. Thus, a speedup in processing time is achieved without any prior knowledge about the model configuration.

Originele taal-2English
Titel2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
Pagina's1842-1847
Aantal pagina's6
ISBN van elektronische versie9781538634608
DOI's
StatusPublished - mei 2019
Evenement2019 IEEE International Instrumentation and Measurement Technology Conference - Auckland, New Zealand
Duur: 20 mei 201923 mei 2019

Publicatie series

NaamI2MTC 2019 - 2019 IEEE International Instrumentation and Measurement Technology Conference, Proceedings
Volume2019-May

Conference

Conference2019 IEEE International Instrumentation and Measurement Technology Conference
Land/RegioNew Zealand
StadAuckland
Periode20/05/1923/05/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Initial Estimation of Wiener-Hammerstein System with Random Forest'. Samen vormen ze een unieke vingerafdruk.

Citeer dit