Initialisation Schemes for the Polynomial Nonlinear State Space Model of the Lithium-ion Battery from Multiple Datasets .

Rishi Relan, Koen Tiels, Jean-Marc Paul Timmermans, Joannes Schoukens

Onderzoeksoutput: Unpublished paper

Samenvatting

Due to slow dynamics data acquisition for battery modelling is a time consuming process and sometimes increasing the measurement time is either not possible due to constraints in data acquisition hardware or it is not possible to cover the whole range of operation in one experiment, hence data from multiple experiments must be acquired. In this paper, two different methodologies to initialise the Polynomial Nonlinear State Space (PNLSS) model structure are proposed, which are based on the Local Polynomial Method (LPM) to estimate nonparametrically the Best Linear Approximation BLA) from multiple datasets.
Originele taal-2English
Pagina's140
Aantal pagina's1
StatusPublished - 28 mrt. 2017
Evenement36th Benelux Meeting on Systems and Control - Sol-Cress, Spa, Spa, Belgium
Duur: 28 mrt. 201730 mrt. 2017
http://www.beneluxmeeting.nl/2017/
http://www.beneluxmeeting.nl/2017/
http://www.beneluxmeeting.nl/2017/
http://www.beneluxmeeting.nl/2017/

Conference

Conference36th Benelux Meeting on Systems and Control
Land/RegioBelgium
StadSpa
Periode28/03/1730/03/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Initialisation Schemes for the Polynomial Nonlinear State Space Model of the Lithium-ion Battery from Multiple Datasets .'. Samen vormen ze een unieke vingerafdruk.

Citeer dit