Integration of Genomic Data Enables Selective Discovery of Breast Cancer Drivers

Félix Sanchez-Garcia, Patricia Villagrasa, Junji Matsui, Dylan Kotliar, Verónica Castro, Uri David Akavia, Bo Juen Chen, Laura Saucedo-Cuevas, Ruth Rodriguez Barrueco, David Llobet-Navas, Jose M. Silva, Dana Pe'Er

Onderzoeksoutput: Articlepeer review

69 Citaten (Scopus)


Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, an algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p <10-14). Nine of ten top-scoring Helios genes are known drivers of breast cancer, and in vitro validation of 12 candidates predicted by Helios found ten conferred enhanced anchorage-independent growth, demonstrating Helios's exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying driver genes and how it can yield important insights into cancer.
Originele taal-2English
Pagina's (van-tot)1461-1475
Aantal pagina's15
Nummer van het tijdschrift6
StatusPublished - 4 dec 2014


Duik in de onderzoeksthema's van 'Integration of Genomic Data Enables Selective Discovery of Breast Cancer Drivers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit