Projecten per jaar
Samenvatting
Let A be a CQG Hopf ∗-algebra, i.e. a Hopf ∗-algebra with a positive invariant state. Given a unital right coideal ∗-subalgebra B of A, we provide conditions for the existence of a quasi-invariant integral on the stabilizer coideal B⊥ inside the dual discrete multiplier Hopf ∗-algebra of A. Given such a quasi-invariant integral, we show how it can be extended to a quasi-invariant integral on the Drinfeld double coideal. We moreover show that the representation theory of the Drinfeld double coideal has a monoidal structure. As an application, we determine the quasi-invariant integral for the coideal ∗-algebra Uq(sl(2,R)) constructed from the Podleś spheres.
Originele taal-2 | English |
---|---|
Artikelnummer | rnae094 |
Pagina's (van-tot) | 10650-10677 |
Aantal pagina's | 28 |
Tijdschrift | International Mathematics Research Notices |
Volume | 2024 |
Nummer van het tijdschrift | 14 |
DOI's | |
Status | Published - 1 jul 2024 |
Bibliografische nota
Publisher Copyright:© The Author(s) 2024. Published by Oxford University Press.
Vingerafdruk
Duik in de onderzoeksthema's van 'Invariant integrals on coideals and their Drinfeld doubles'. Samen vormen ze een unieke vingerafdruk.Projecten
- 1 Afgelopen
-
FWOAL900: Kwantum symmetrische ruimtes, operator algebra's en quantum cluster algebra's
1/01/19 → 31/12/22
Project: Fundamenteel