TY - GEN
T1 - Learning relational representations with auto-encoding logic programs
AU - Dumančić, Sebastijan
AU - Guns, Tias
AU - Meert, Wannes
AU - Blockeel, Hendrik
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Deep learning methods capable of handling relational data have proliferated over the last years. In contrast to traditional relational learning methods that leverage first-order logic for representing such data, these deep learning methods aim at re-representing symbolic relational data in Euclidean spaces. They offer better scalability, but can only numerically approximate relational structures and are less flexible in terms of reasoning tasks supported. This paper introduces a novel framework for relational representation learning that combines the best of both worlds. This framework, inspired by the auto-encoding principle, uses first-order logic as a data representation language, and the mapping between the original and latent representation is done by means of logic programs instead of neural networks. We show how learning can be cast as a constraint optimisation problem for which existing solvers can be used. The use of logic as a representation language makes the proposed framework more accurate (as the representation is exact, rather than approximate), more flexible, and more interpretable than deep learning methods. We experimentally show that these latent representations are indeed beneficial in relational learning tasks.1
AB - Deep learning methods capable of handling relational data have proliferated over the last years. In contrast to traditional relational learning methods that leverage first-order logic for representing such data, these deep learning methods aim at re-representing symbolic relational data in Euclidean spaces. They offer better scalability, but can only numerically approximate relational structures and are less flexible in terms of reasoning tasks supported. This paper introduces a novel framework for relational representation learning that combines the best of both worlds. This framework, inspired by the auto-encoding principle, uses first-order logic as a data representation language, and the mapping between the original and latent representation is done by means of logic programs instead of neural networks. We show how learning can be cast as a constraint optimisation problem for which existing solvers can be used. The use of logic as a representation language makes the proposed framework more accurate (as the representation is exact, rather than approximate), more flexible, and more interpretable than deep learning methods. We experimentally show that these latent representations are indeed beneficial in relational learning tasks.1
UR - http://www.scopus.com/inward/record.url?scp=85074932472&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2019/842
DO - 10.24963/ijcai.2019/842
M3 - Conference paper
AN - SCOPUS:85074932472
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 6081
EP - 6087
BT - Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
A2 - Kraus, Sarit
PB - International Joint Conferences on Artificial Intelligence
T2 - 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Y2 - 10 August 2019 through 16 August 2019
ER -