TY - JOUR
T1 - Making sense of variation in sclerochronological stable isotope profiles of mollusks and fish otoliths from the early Eocene southern North Sea Basin
AU - Vellekoop, Johan
AU - Vanhove, Daan
AU - Jelu, Inge
AU - Claeys, Philippe
AU - Ivany, Linda C.
AU - de Winter, Niels J.
AU - Speijer, Robert P.
AU - Steurbaut, Etienne
N1 - Funding Information:
Annelise Folie is thanked for providing access to the INS collections and permission for destructive analyses on loaned specimens of V. planicosta lerichei. We are grateful to Peter Stassen for his help with SEM imaging, and Rieko Adriaens for his help with XRD analyses. We thank Herman Nijs, David K. Moss, Lora Wingate and Michael Korntheuer who assisted with sample preparation or stable isotope analysis. This research was funded by the Belgian Federal Science Policy (BELSPO) through FED-tWIN project Prf-2020-038 (MicroPAST), through KU Leuven STG grant 3E211203 to J.V. through a grant by the Agency for Innovation through Science and Technology to D.V. (IWT SB093015) and grants by the Research Foundation Flanders (FWO) to R.P\u00B7S, P.C. and E.S. (G.0422.10 N) and N.J.W. (12ZB220N; Scientific Prize Climate Research). PC thanks FWO Hercules foundation and VUB Strategic Research for support of Stable Isotope Lab. LCI was supported in part by EAR-0719645 from the US National Science Foundation. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Funding Information:
Annelise Folie is thanked for providing access to the INS collections and permission for destructive analyses on loaned specimens of V. planicosta lerichei. We are grateful to Peter Stassen for his help with SEM imaging, and Rieko Adriaens for his help with XRD analyses. We thank Herman Nijs, David K. Moss, Lora Wingate and Michael Korntheuer who assisted with sample preparation or stable isotope analysis. This research was funded by the Belgian Federal Science Policy (BELSPO) through FED-tWIN project Prf-2020-038 (MicroPAST), through KU Leuven STG grant 3E211203 to J.V., through a grant by the Agency for Innovation through Science and Technology to D.V. (IWT SB093015) and grants by the Research Foundation Flanders (FWO) to R.P\u00B7S, P.C. and E.S. (G.0422.10\u202FN) and N.J.W. (12ZB220N; Scientific Prize Climate Research). PC thanks FWO Hercules foundation and VUB Strategic Research for support of Stable Isotope Lab. LCI was supported in part by EAR-0719645 from the US National Science Foundation.
Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/2/1
Y1 - 2025/2/1
N2 - Stable isotope sclerochemistry of biogenic carbonate is frequently used for the reconstruction of paleotemperature and seasonality. Yet, few studies have compared intra-and inter-taxon isotope variability and variation within a single depositional environment. We measured seasonal changes in δ18O and δ13C compositions in multiple specimens of two carditid bivalve species, a turritelline gastropod species, and two species of otoliths from demersal fish, from two early Eocene (latest Ypresian, 49.2 Ma) coquinas in the inner neritic Aalter Formation, located in the Belgian part of the southern North Sea Basin (paleolatitude ∼41°N). Results demonstrate considerable variation among taxa in the mean, amplitude, and skewness of δ18O and δ13C values from sequentially sampled growth series. We attribute this variation to factors including differences in seasonal growth over ontogeny, mixing of depositional settings by sediment transport, differences between sedentary and mobile organisms, and differences in longevity of the taxa in question. Growth cessation during winters in turritellines and fishes in particular lead to an incomplete representation of the ' seasonal cycle in their growth increments, in comparison to carditid bivalves. Ophidiid fish otolith isotope records appear to reflect environmental conditions over a wider range of habitats and environments, and we infer this is due to a combination of sedimentary transport, as these are small structures, and postmortem transport by free-swimming predatory fish. Our study highlights the potential variability encompassed by taxa in the shallow marine realm even when they are found in the same deposits. While this has significant implications for seasonality reconstructions based on conventional isotope profiles, we show that careful study of the ecology and ontogeny of multiple taxa and specimens within a death assemblage can reveal sources of variation and yield a close approximation of conditions in the setting of interest.
AB - Stable isotope sclerochemistry of biogenic carbonate is frequently used for the reconstruction of paleotemperature and seasonality. Yet, few studies have compared intra-and inter-taxon isotope variability and variation within a single depositional environment. We measured seasonal changes in δ18O and δ13C compositions in multiple specimens of two carditid bivalve species, a turritelline gastropod species, and two species of otoliths from demersal fish, from two early Eocene (latest Ypresian, 49.2 Ma) coquinas in the inner neritic Aalter Formation, located in the Belgian part of the southern North Sea Basin (paleolatitude ∼41°N). Results demonstrate considerable variation among taxa in the mean, amplitude, and skewness of δ18O and δ13C values from sequentially sampled growth series. We attribute this variation to factors including differences in seasonal growth over ontogeny, mixing of depositional settings by sediment transport, differences between sedentary and mobile organisms, and differences in longevity of the taxa in question. Growth cessation during winters in turritellines and fishes in particular lead to an incomplete representation of the ' seasonal cycle in their growth increments, in comparison to carditid bivalves. Ophidiid fish otolith isotope records appear to reflect environmental conditions over a wider range of habitats and environments, and we infer this is due to a combination of sedimentary transport, as these are small structures, and postmortem transport by free-swimming predatory fish. Our study highlights the potential variability encompassed by taxa in the shallow marine realm even when they are found in the same deposits. While this has significant implications for seasonality reconstructions based on conventional isotope profiles, we show that careful study of the ecology and ontogeny of multiple taxa and specimens within a death assemblage can reveal sources of variation and yield a close approximation of conditions in the setting of interest.
KW - Eocene
KW - Fossil assemblage
KW - Sclerochronology
KW - Taphonomy
UR - http://www.scopus.com/inward/record.url?scp=85211015331&partnerID=8YFLogxK
U2 - 10.1016/j.palaeo.2024.112627
DO - 10.1016/j.palaeo.2024.112627
M3 - Article
AN - SCOPUS:85211015331
SN - 0031-0182
VL - 659
SP - 1
EP - 18
JO - Palaeogeography, Palaeoclimatology, Palaeoecology
JF - Palaeogeography, Palaeoclimatology, Palaeoecology
M1 - 112627
ER -