Maximal partial line spreads of non-singular quadrics

Sara Rottey, Leo Storme

Onderzoeksoutput: Articlepeer review

Samenvatting

For $n \geq 9$, we construct maximal partial line spreads for non-singular quadrics of $PG(n,q)$ for every size between approximately $(cn+d)(q^{n-3}+q^{n-5})\log{2q}$ and $q^{n-2}$, for some small constants $c$ and $d$.
These results are similar to spectrum results on maximal partial line spreads in finite projective spaces by Heden, and by G\'acs and Sz\H onyi. These results also extend spectrum results on maximal partial line spreads in the finite generalized quadrangles $W_3(q)$ and $Q(4,q)$ by Pepe, R\"{o}{\ss}ing and Storme.
Originele taal-2English
Pagina's (van-tot)33-51
Aantal pagina's19
TijdschriftDesigns, Codes and Cryptography
Volume72
StatusPublished - 1 jan 2013

Vingerafdruk

Duik in de onderzoeksthema's van 'Maximal partial line spreads of non-singular quadrics'. Samen vormen ze een unieke vingerafdruk.

Citeer dit