Moderate-density parity-check codes from projective bundles

Onderzoeksoutput: Articlepeer review

9 Downloads (Pure)


New constructions for moderate-density parity-check (MDPC) codes using finite geometry are proposed. We design a parity-check matrix for the main family of binary codes as the concatenation of two matrices: the incidence matrix between points and lines of the Desarguesian projective plane and the incidence matrix between points and ovals of a projective bundle. A projective bundle is a special collection of ovals which pairwise meet in a unique point. We determine the minimum distance and the dimension of these codes, and we show that they have a natural quasi-cyclic structure. We consider alternative constructions based on an incidence matrix of a Desarguesian projective plane and compare their error-correction performance with regards to a modification of Gallager’s bit-flipping decoding algorithm. In this setting, our codes have the best possible error-correction performance after one round of bit-flipping decoding given the parameters of the code’s parity-check matrix.

Originele taal-2English
ArtikelnummerSpecial Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless
Pagina's (van-tot)2943-2966
Aantal pagina's24
TijdschriftDesigns, Codes and Cryptography
Nummer van het tijdschrift12
StatusPublished - 24 mei 2022

Bibliografische nota

Publisher Copyright:
© 2022, The Author(s).


Duik in de onderzoeksthema's van 'Moderate-density parity-check codes from projective bundles'. Samen vormen ze een unieke vingerafdruk.

Citeer dit