Monotone-light factorisation systems and torsion theories

Tomas Everaert, Marino Gran

    Onderzoeksoutput: Articlepeer review

    12 Citaten (Scopus)

    Samenvatting

    Given a torsion theory (Y,X) in an abelian category C, the reflector I:C->X to the torsion-free subcategory X induces a reflective factorisation system (E,M) on C. It was shown by A. Carboni, G.M. Kelly, G. Janelidze and R. Paré that (E,M) induces a monotone-light factorisation system (E',M*) by simultaneously stabilising E and localising M, whenever the torsion theory is hereditary and any object in C is a quotient of an object in X. We extend this result to arbitrary normal categories, and improve it also in the abelian case, where the heredity assumption on the torsion theory turns out to be redundant. Several new examples of torsion theories where this result applies are considered in the categories of abelian groups, groups, topological groups, commutative rings, and crossed modules
    Originele taal-2English
    Pagina's (van-tot)996-1006
    Aantal pagina's11
    TijdschriftBulletin des Sciences Mathématiques
    Volume137
    Nummer van het tijdschrift8
    StatusPublished - 2013

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Monotone-light factorisation systems and torsion theories'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit