Monte-carlo simulation of the effective lunar aperture for detection of ultra-high energy neutrinos with LOFAR

Godwin Komla Krampah, Stijn Buitink, Arthur Corstanje, Mitja Desmet, Tim Huege, Hershal Pandya, Justin D. Bray, H. Falcke, Brian M. Hare, V. B. Jhansi, N. Karastathis, K. Mulrey, Jörg Hörandel , Pragati Mitra, Anna Nelles, Olaf Scholten, S. ter Veen, S. Thoudam, Tobias Winchen

Onderzoeksoutput: Articlepeer review

4 Downloads (Pure)


Ultra-high-energy (UHE) cosmic neutrinos interacting with the Moon’s regolith generate particle showers that
emit Askaryan radiation. This radiation can be observed from
the Earth using ground-based radio telescopes like LOFAR.
We simulate the effective detection aperture for UHE neutrinos hitting the Moon. Under the same assumptions, results
from this work are in good agreement with previous analytic
parameterizations and Monte Carlo codes. The dependence
of the effective detection aperture on the observing parameters, such as observing frequency and minimum detection
threshold, and lunar characteristics like surface topography
have been studied. Using a Monte Carlo simulation, we find
that the detectable neutrino energy threshold is lowered when
we include a realistic treatment of the inelasticity, transmission coefficient, and surface roughness. Lunar surface roughness at large scales enhances the total aperture for higher
observation frequencies (ν ≥ 1 GHz) but has no significant
effect on the LOFAR aperture. However, roughness at scales
small compared to the wavelength reduces the aperture at all
Originele taal-2English
Aantal pagina's20
TijdschriftEuropean Physical Journal C - Particles & Fields
Nummer van het tijdschrift12
StatusPublished - 18 dec 2023

Bibliografische nota

Publisher Copyright:
© 2023, The Author(s).


Duik in de onderzoeksthema's van 'Monte-carlo simulation of the effective lunar aperture for detection of ultra-high energy neutrinos with LOFAR'. Samen vormen ze een unieke vingerafdruk.

Citeer dit