Non-deterministic Approximation Operators: Ultimate Operators, Semi-equilibrium Semantics, and Aggregates

Jesse Heyninck, Bart Bogaerts

Onderzoeksoutput: Articlepeer review

17 Downloads (Pure)

Samenvatting

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of non-monotonic logics. In recent work, AFT was generalized to non-deterministic operators, that is, operators whose range are sets of elements rather than single elements. In this paper, we make three further contributions to non-deterministic AFT: (1) we define and study ultimate approximations of non-deterministic operators, (2) we give an algebraic formulation of the semi-equilibrium semantics by Amendola et al., and (3) we generalize the characterizations of disjunctive logic programs to disjunctive logic programs with aggregates.

Originele taal-2English
Pagina's (van-tot)632-647
Aantal pagina's16
TijdschriftTheory and Practice of Logic Programming
Volume23
Nummer van het tijdschrift4
DOI's
StatusPublished - 2023

Bibliografische nota

Publisher Copyright:
© The Author(s), 2023. Published by Cambridge University Press.

Vingerafdruk

Duik in de onderzoeksthema's van 'Non-deterministic Approximation Operators: Ultimate Operators, Semi-equilibrium Semantics, and Aggregates'. Samen vormen ze een unieke vingerafdruk.

Citeer dit