Nonlinear model decoupling using a tensor decomposition initialization

Gabriel Hollander, Philippe Dreesen, Mariya Kamenova Ishteva, Joannes Schoukens

Onderzoeksoutput: Unpublished paper

Samenvatting

Finding an approximate model of a given model, by reducing its number of parameters, while keeping the accuracy as good as possible, is of great importance for any existing model. Currently, some nonlinear block-oriented models are hard to interpret, and in need of simplification. For this, we have developed a decoupling method, using tensor decompositions.
Originele taal-2English
Pagina's32
Aantal pagina's1
StatusPublished - 24 apr. 2017
EvenementWorkshop on Nonlinear System Identification Benchmarks 2017 - Vrije Universiteit Brussels, U-residence, Brussels, Belgium
Duur: 24 apr. 201726 apr. 2017
http://homepages.vub.ac.be/~mschouke/FILES/BenchmarkWorkshop2017_Abstracts.pdf

Conference

ConferenceWorkshop on Nonlinear System Identification Benchmarks 2017
Land/RegioBelgium
StadBrussels
Periode24/04/1726/04/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Nonlinear model decoupling using a tensor decomposition initialization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit