Nonlinear system identification: Interpreting Volterra kernels using tensors

Mariya Kamenova Ishteva, Philippe Dreesen, Joannes Schoukens, David Westwick

Onderzoeksoutput: Unpublished paper

Samenvatting

To capture the nonlinear effects of the real world, today the focus of system identification is shifting from linear to nonlinear dynamical models. Every nonlinear dynamic system with fading memory can be approximated arbitrarily well by its Volterra kernel description, which is a generalization of the Taylor series for systems with memory. However, the Volterra series provides a non-parametric representation, lacking physical and intuitive interpretation. To take advantage of the Volterra representation while aiming for an interpretable block-oriented model, we imposed the desired structure using tensor techniques (see figure below).
Originele taal-2English
Pagina's22
Aantal pagina's1
StatusPublished - 28 mrt. 2017
Evenement36th Benelux Meeting on Systems and Control - Sol-Cress, Spa, Spa, Belgium
Duur: 28 mrt. 201730 mrt. 2017
http://www.beneluxmeeting.nl/2017/
http://www.beneluxmeeting.nl/2017/
http://www.beneluxmeeting.nl/2017/
http://www.beneluxmeeting.nl/2017/

Conference

Conference36th Benelux Meeting on Systems and Control
Land/RegioBelgium
StadSpa
Periode28/03/1730/03/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Nonlinear system identification: Interpreting Volterra kernels using tensors'. Samen vormen ze een unieke vingerafdruk.

Citeer dit