On the duality of generalized Lie and Hopf algebras

Isar Goyvaerts, Joost Vercruysse

Onderzoeksoutput: Articlepeer review

6 Citaten (Scopus)

Samenvatting

We show how, under certain conditions, an adjoint pair of braided monoidal functors can be lifted to an adjoint pair between categories of Hopf algebras. This leads us to an abstract version of Michaelis' theorem, stating that given a Hopf algebra $H$, there is a natural isomorphism of Lie algebras $Q(H)^*\cong P(H^\circ)$, where $Q(H)^*$ is the dual Lie algebra of the Lie coalgebra of indecomposables of $H$, and $P(H^\circ)$ is the Lie algebra of primitive elements of the Sweedler dual of $H$. We apply our theory to Turaev's Hopf group-(co)algebras.
Originele taal-2English
Pagina's (van-tot)154-190
TijdschriftAdvances in Mathematics
Volume258
StatusPublished - 2014

Vingerafdruk

Duik in de onderzoeksthema's van 'On the duality of generalized Lie and Hopf algebras'. Samen vormen ze een unieke vingerafdruk.

Citeer dit