Partial augmentations power property: A Zassenhaus Conjecture related problem

Leo Margolis, Angel Del Rio

Onderzoeksoutput: Articlepeer review

4 Citaten (Scopus)


Zassenhaus conjectured that any unit of finite order in the integral group ring of a finite group G is conjugate in the rational group algebra of G to an element in ±G. We review the known weaker versions of this conjecture and introduce a new condition, on the partial augmentations of the powers of a unit of finite order in

, which is weaker than the Zassenhaus Conjecture but stronger than its other weaker versions.

We prove that this condition is satisfied for units mapping to the identity modulo a nilpotent normal subgroup of G. Moreover, we show that if the condition holds then the HeLP Method adopts a more friendly form and use this to prove the Zassenhaus Conjecture for a special class of groups.
Originele taal-2English
Pagina's (van-tot)4089-4101
Aantal pagina's13
TijdschriftJournal of Pure and Applied Algebra
Nummer van het tijdschrift9
StatusPublished - sep 2019


Duik in de onderzoeksthema's van 'Partial augmentations power property: A Zassenhaus Conjecture related problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit